A Novel Three-SPR Parallel Platform for Vessel Wave Compensation

Author:

Zhan Yong,Tian Huichun,Xu Jianan,Wu Shaofei,Fu Junsheng

Abstract

A wave compensation platform based on 3-SPR parallel platform is designed for marine ships with a dynamic positioning system. It can compensate for the heave, rolling, and pitching movement of a vessel under level 4 sea state. The forward kinematics of the mechanism is used to draw the central point position workspace and the attitude workspace of the moving deck of the compensation platform. The compensation effects of the 3-RPS parallel compensation platform and the 3-SPR parallel compensation platform are compared, and the feasibility and superiority of the compensation scheme using the 3-SPR parallel compensation platform are proved. To lower the working height of the upper deck of the compensation platform and reduce the extension range of the support legs, the structure of the compensation platform is optimized, and a novel 3-SPR parallel platform is designed. Finally, a simulation model was established. Using the inverse kinematic model as a compensation movement solver which can online calculate the length of branch legs based on the measured heaving, rolling, and pitching values of vessels, the compensation effect of the new structure under a certain sea state is simulated. The result demonstrated the efficiency of the ship motion decoupling movement of the newly designed compensation platform and proved the competence of it.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference22 articles.

1. Design and Research of Active Heave Compensation System Based on Laser Ranging Sensor

2. Position Analysis of A 3-Spr Parallel Mechanism;Li;J. Theor. Appl. Inf. Technol.,2013

3. Optimization design of heave compensation device platform under six level of sea condition;Gu;Ship Sci. Technol.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3