Abstract
As groundwater quality monitoring networks have been expanded over the last decades, significant time series are now available. Therefore, a scientific effort is needed to explore innovative techniques for groundwater quality time series exploitation. In this work, time series exploratory analysis and time series cluster analysis are applied to groundwater contamination data with the aim of developing data-driven monitoring strategies. The study area is an urban area characterized by several superimposing historical contamination sources and a complex hydrogeological setting. A multivariate time series cluster analysis was performed on PCE and TCE concentrations data over a 10 years time span. The time series clustering was performed based on the Dynamic Time Warping method. The results of the clustering identified 3 clusters associated with diffuse background contamination and 7 clusters associated with local hotspots, characterized by specific time profiles. Similarly, a univariate time series cluster analysis was applied to Cr(VI) data, identifying 3 background clusters and 7 hotspots, including 4 singletons. The clustering outputs provided the basis for the implementation of data-driven monitoring strategies and early warning systems. For the clusters associated with diffuse background contaminations and those with constant trends, trigger levels were calculated with the 95° percentile, constituting future threshold values for early warnings. For the clusters with pluriannual trends, either oscillatory or monotonous, specific monitoring strategies were proposed based on trends’ directions. Results show that the spatio-temporal overview of the data variability obtained from the time series cluster analysis helped to extract relevant information from the data while neglecting measurements noise and uncertainty, supporting the implementation of a more efficient groundwater quality monitoring.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Reference70 articles.
1. UNESCO (2021). The Role of Sound Groundwater Resource Management and Governance to Achieve Water Security, i-WSSM.
2. UNESCO (2019). Water Security and the Sustainable Development Goals, i-WSSM.
3. United Nations (2022). Water Development Report 2022: Groundwater: Making the Invisible Visible, United Nations.
4. Choosing between Linear and Nonlinear Models and Avoiding Overfitting for Short and Long Term Groundwater Level Forecasting in a Linear System;Zanotti;J. Hydrol.,2019
5. Forecasting Groundwater Levels Using Nonlinear Autoregressive Networks with Exogenous Input (NARX);Wunsch;J. Hydrol.,2018
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献