Individual Tree Aboveground Biomass Estimation Based on UAV Stereo Images in a Eucalyptus Plantation

Author:

Liu Yao1,Lei Peng2,You Qixu1,Tang Xu1ORCID,Lai Xin1,Chen Jianjun1,You Haotian1ORCID

Affiliation:

1. College of Geomatics and Geoinformation, Guilin University of Technology, No. 12 Jian’gan Road, Guilin 541006, China

2. The School of Hydraulic Engineering, Guangxi Vocational College of Water Resources and Electric Power, No. 99 Chang’gu Road, Nanning 530023, China

Abstract

As one of the three fastest-growing tree species in the world, eucalyptus grows rapidly, with a monthly growth rate of up to 1 m and a maximum annual growth rate of up to 10 m. Therefore, ways to accurately and quickly obtain the aboveground biomass (AGB) of eucalyptus in different growth stages at a low cost are the foundation of achieving eucalyptus growth-change monitoring and precise management. Although Light Detection and Ranging (LiDAR) can achieve high-accuracy estimations of individual eucalyptus tree biomasses, the cost of data acquisition is relatively high. While the AGB estimation accuracy of high-resolution images may be affected by a lack of forest vertical structural information, stereo images obtained using unmanned aerial vehicles (UAVs) can not only provide horizontal structural information but also vertical structural information through derived point data, demonstrating strong application potential in estimating the biomass of eucalyptus plantations. To explore the potential of UAV stereo images for estimating the AGB of individual eucalyptus trees and further investigate the impact of stereo-image-derived features on the construction of biomass models, in this study, UAVs equipped with consumer-grade cameras were used to obtain multitemporal stereo images. Different features, such as spectral features, texture, tree height, and crown area, were extracted to estimate the AGB of individual eucalyptus trees of five different ages with three algorithms. The different features extracted based on the UAV images had different effects on estimating AGB in individual eucalyptus trees. By estimating eucalyptus AGB using only spectrum features, we found that tree height had the greatest impact, with its R2 value increasing by 0.28, followed by forest age. Other features, such as spectrum, texture, and crown area, had relatively small effects. For the three algorithms, the estimation accuracy of the CatBoost algorithm was the highest, with an R2 ranging from 0.65 to 0.90, and the normalized root-mean-square error (NRMSE) ranged from 0.08 to 0.15. This was followed by the random forest algorithm. The ridge regression algorithm had the lowest accuracy, with an R2 ranging from 0.34 to 0.82 and an NRMSE value ranging from 0.11 to 0.21. The AGB model that we established with forest age, TH, crown area, and HOM-B feature variables using the CatBoost algorithm had the best estimation accuracy, with an R2 of 0.90 and an NRMSE of 0.08. The results indicated that accurately estimating the AGB of individual eucalyptus trees can be achieved based on stereo images obtained using UAVs equipped with affordable, consumer-grade cameras. This paper can provide methodological references and technical support for estimating forest biomass, carbon storage, and other structural parameters based on UAV images.

Funder

National Natural Science Foundation of China

Guangxi Natural Science Foundation

Guangxi Science and Technology Base and Talent Project

BaGuiScholars program of the provincial government of Guangxi

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3