Theoretical Description of the Hydrodynamic Process after Barrier Lake Formation and Emergency Responses Implementation

Author:

Wang Jingwen,Tan Guangming,Shu Caiwen,Zhang Chong,Wang Rui,Han ShashaORCID,Yang Qigui

Abstract

Barrier lakes are secondary disasters with associated landslides and debris flow that can cause serious damage to the downstream populations and areas. Existing studies are lacking in comprehensive descriptions of the rescue process, where the main channel streamflow varies and topographic erosion develops, as well as engineering disposal performs. This paper aimed to theoretically investigate the formation and emergency responses to barrier lakes using on-the-spot investigation and calculus theory. The results showed that the formation of a barrier lake led to a sudden variation in the flow-change rate (normal to infinite). However, after implementing emergency measures, this rate returned to normal. The whole rescue process could be regarded as the accumulation of disposal effects. Volume changes in the main streams were expressed by a differential equation of the lake surface area and water level variations. In addition, a corresponding theoretical description of flow discharges was also given when engineering measures such as the excavation of diversion channels and engineering blasting were adopted. Specifically, the theoretical expressions of flow discharge were given respectively in the developing stage and breach stable stage after the excavation of diversion channels. The flow discharge through certain sections was also described theoretically when engineering blasting was chosen to widen and deepen the cross-section of the diversion channels. Overall, this paper mathematicizes and theorizes the existing emergency measures, which helps to better understand their implementation principles and application requirements.

Funder

POWERCHINA Chengdu Engineering Corporation Limited

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3