Abstract
Barrier lakes are secondary disasters with associated landslides and debris flow that can cause serious damage to the downstream populations and areas. Existing studies are lacking in comprehensive descriptions of the rescue process, where the main channel streamflow varies and topographic erosion develops, as well as engineering disposal performs. This paper aimed to theoretically investigate the formation and emergency responses to barrier lakes using on-the-spot investigation and calculus theory. The results showed that the formation of a barrier lake led to a sudden variation in the flow-change rate (normal to infinite). However, after implementing emergency measures, this rate returned to normal. The whole rescue process could be regarded as the accumulation of disposal effects. Volume changes in the main streams were expressed by a differential equation of the lake surface area and water level variations. In addition, a corresponding theoretical description of flow discharges was also given when engineering measures such as the excavation of diversion channels and engineering blasting were adopted. Specifically, the theoretical expressions of flow discharge were given respectively in the developing stage and breach stable stage after the excavation of diversion channels. The flow discharge through certain sections was also described theoretically when engineering blasting was chosen to widen and deepen the cross-section of the diversion channels. Overall, this paper mathematicizes and theorizes the existing emergency measures, which helps to better understand their implementation principles and application requirements.
Funder
POWERCHINA Chengdu Engineering Corporation Limited
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献