A Two-Class Data Transmission Method Using a Lightweight Blockchain Structure for Secure Smart Dust IoT Environments

Author:

Park Joonsuu,Park KeeHyun

Abstract

In smart dust IoT environments, a large number of devices with low computing power/resources are deployed to collect surrounding information. There are many issues to consider for an efficient and secure smart dust IoT environment. Sometimes the urgent sensed data needs to be transmitted immediately. In addition, there are potential problems related to security issues since the smart dust IoT systems may be deployed in hard-to-access areas. In this paper, we propose an effective transmission method for two-class sensed data for secure smart IoT systems. We divide the sensed data into two classes which consist of the urgent sensed data class (requiring urgent data transmission) and the normal sensed data class (with a slight transmission delay due to yielding to the urgent data transmission). In addition, for security reasons, the proposed transmission method uses two kinds of blockchains with the following two ledgers: (1) the urgent sensed data ledger, which is a ledger of data that needs urgent transmission; and (2) the normal sensed data ledger, which is a ledger of data that allows some delay. To be specific, the lightweight blockchain based on our earlier work is used for the normal sensed data transmission, whereas the modified conventional blockchain is used for the normal sensed data transmission. The experiments show that the performance of the proposed transmission method is better than the conventional transmission method in almost all sections. There is a 53% performance increase on average with regard to the transmission time. When the ratio of urgent sensed data is 0% (i.e., no urgent sensed data at all), the proposed transmission method is greater improved by as much as about 96%. This means that the lightweight blockchain scheme used in the proposed transmission method for the normal sensed data is very efficient.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Internet of Things Data Aggregation Based on Image Information Hiding;Proceedings of the 2023 7th International Conference on Digital Signal Processing;2023-02-17

2. Blockchain Data Secure Transmission Method Based on Homomorphic Encryption;Computational Intelligence and Neuroscience;2022-04-30

3. Optimization method of Data interaction in power IoT based on particle swarm algorithm;2022 2nd International Conference on Consumer Electronics and Computer Engineering (ICCECE);2022-01-14

4. Accurate Location Estimation of Smart Dusts Using Machine Learning;Computers, Materials & Continua;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3