Semantic Profiles for Easing SensorML Description: Review and Proposal

Author:

Tagliolato PaoloORCID,Fugazza CristianoORCID,Oggioni AlessandroORCID,Carrara PaolaORCID

Abstract

The adoption of Sensor Web Enablement (SWE) practices by sensor maintainers is hampered by the inherent complexity of the Sensor Model Language (SensorML), its high expressiveness, and the scarce availability of editing tools. To overcome these issues, the Earth Observation (EO) community often recurs to SensorML profiles narrowing the range of admitted metadata structures and value ranges. Unfortunately, profiles frequently fall short of providing usable editing tools and comprehensive validation criteria, particularly for the difficulty of checking value ranges in the multi-tenanted domain of the Web of Data. In this paper, we provide an updated review of current practices, techniques, and tools for editing SensorML in the perspective of profile support and introduce our solution for effective profile definition. Beside allowing for formalization of a broad range of constraints that concur in defining a metadata profile, our proposal closes the gap between profile definition and actual editing of the corresponding metadata by allowing for ex-ante validation of the metadata that is produced. On this basis, we suggest the notion of Semantic Web SensorML profiles, characterized by a new family of constraints involving Semantic Web sources. We also discuss implementation of SensorML profiles with our tool and pinpoint the benefits with respect to the existing ex-post validation facilities provided by schema definition languages.

Funder

Horizon 2020 Framework Programme

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Reference55 articles.

1. Ogc® sensor web enablement:overview and high level achhitecture.

2. OpenGIS Sensor Model Language (SensorML) Implementation Specification,2007

3. OGC® SensorML: Model and XML Encoding Standard,2014

4. SPARQL 1.1 Query Language,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3