Abstract
Nowadays, the increasing number of patients accompanied with the emergence of new symptoms and diseases makes heath monitoring and assessment a complicated task for medical staff and hospitals. Indeed, the processing of big and heterogeneous data collected by biomedical sensors along with the need of patients’ classification and disease diagnosis become major challenges for several health-based sensing applications. Thus, the combination between remote sensing devices and the big data technologies have been proven as an efficient and low cost solution for healthcare applications. In this paper, we propose a robust big data analytics platform for real time patient monitoring and decision making to help both hospital and medical staff. The proposed platform relies on big data technologies and data analysis techniques and consists of four layers: real time patient monitoring, real time decision and data storage, patient classification and disease diagnosis, and data retrieval and visualization. To evaluate the performance of our platform, we implemented our platform based on the Hadoop ecosystem and we applied the proposed algorithms over real health data. The obtained results show the effectiveness of our platform in terms of efficiently performing patient classification and disease diagnosis in healthcare applications.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference33 articles.
1. A Combined Approach for Real-Time Data Compression in Wireless Body Sensor Networks
2. Medical Data Processing and Analysis for Remote Health and Activities Monitoring;Vitabile,2019
3. Data Science Algorithms and Techniques for Smart Healthcare Using IoT and Big Data Analytics;Syed,2019
4. Deep Learning for IoT Big Data and Streaming Analytics: A Survey
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献