Collaborative Multi-Expert Active Learning for Mobile Health Monitoring: Architecture, Algorithms, and Evaluation

Author:

Saeedi RamyarORCID,Sasani Keyvan,Gebremedhin Assefaw H.

Abstract

Mobile health monitoring plays a central role in the future of cyber physical systems (CPS) for healthcare applications. Such monitoring systems need to process user data accurately. Unlike in other human-centered CPS, in healthcare CPS, the user functions in multiple roles all at the same time: as an operator, an actuator, the physical environment and, most importantly, the target that needs to be monitored in the process. Therefore, mobile health CPS devices face highly dynamic settings generally, and accuracy of the machine learning models the devices employ may drop dramatically every time a change in setting happens. Novel learning architecture that specifically address challenges associated with dynamic environments are therefore needed. Using active learning and transfer learning as organizing principles, we propose a collaborative multiple-expert architecture and accompanying algorithms for the design of machine learning models that autonomously adapt to a new configuration, context, or user need. Specifically, our architecture and its constituent algorithms are designed to manage heterogeneous knowledge sources or experts with varying levels of confidence and type while minimizing adaptation cost. Additionally, our framework incorporates a mechanism for collaboration among experts to enrich their knowledge, which in turn decreases both cost and uncertainty of data labeling in future steps. We evaluate the efficacy of the architecture using two publicly available human activity datasets. We attain activity recognition accuracy of over 85 % (for the first dataset) and 92 % (for the second dataset) by labeling only 15 % of unlabeled data.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Predictive Data Analytics in Telecare and Telehealth: Systematic Scoping Review;Online Journal of Public Health Informatics;2024-08-07

2. Predictive Data Analytics in Telecare and Telehealth: Systematic Scoping Review (Preprint);2024-02-21

3. Modeling of E-Learning Processes;2023 Intelligent Technologies and Electronic Devices in Vehicle and Road Transport Complex (TIRVED);2023-11-15

4. Prediction of COVID-19 Patients’ Emergency Room Revisit using Multi-Source Transfer Learning;2023 IEEE 11th International Conference on Healthcare Informatics (ICHI);2023-06-26

5. Impacts of Behavioral Biases on Active Learning Strategies;2022 International Conference on Artificial Intelligence in Information and Communication (ICAIIC);2022-02-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3