Abstract
In this paper, an effective numerical algorithm for the Stokes equation of a curved surface is presented and analyzed. The velocity field was decoupled from the pressure by the standard velocity correction projection method, and the penalty term was introduced to make the velocity satisfy the tangential condition. The first-order backward Euler scheme and second-order BDF scheme are used to discretize the time separately, and the stability of the two schemes is analyzed. The mixed finite element pair (P2,P1) is applied to discretization of space. Finally, numerical examples are given to verify the accuracy and effectiveness of the proposed method.
Subject
General Physics and Astronomy