CFD Analyses of Textured Surfaces for Tribological Improvements in Hydraulic Pumps

Author:

Casoli PaoloORCID,Scolari FabioORCID,Rundo MassimoORCID,Lettini Antonio,Rigosi Manuel

Abstract

In any hydraulic machine there are lubricated couplings that could become critical beyond certain operating conditions. This paper presents the simulation results concerning textured surfaces with the aim of improving the performance of lubricated couplings in relative motion. The texturing design requires much care to obtain good improvements, and it is essential to analyze both the geometric features of the dimples and the characteristics of the coupled surfaces, like the sliding velocity and gap height. For this purpose, several CFD simulations have been performed to study the behavior of the fluid bounded in the coupling, considering dimples with different shapes, size, and spatial distribution. The simulations consider the onset of gaseous cavitation to evaluate the influence of this phenomenon on the pressure distribution generated by the textured surface. The analyses have pointed out that it is critical to correctly predict the behavior of the textured surface in the presence of local cavitation, in fact, when cavitation occurs, the characteristic time of the transient in which the phase of the fluid change is very rapid and it is comparable to the time taken by the fluid to move from one dimple to the next.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3