LES Analysis of CO Emissions from a High Pressure Siemens Gas Turbine Prototype Combustor at Part Load

Author:

Gruhlke PascalORCID,Beck Christian,Janus Bertram,Kempf Andreas M.

Abstract

This work contributes to the understanding of mechanisms that lead to increased carbon monoxide (CO) concentrations in gas turbine combustion systems. Large-eddy simulations (LES) of a full scale high pressure prototype Siemens gas turbine combustor at three staged part load operating conditions are presented, demonstrating the ability to predict carbon monoxide pollutants from a complex technical system by investigating sources of incomplete CO oxidation. Analytically reduced chemistry is applied for the accurate pollutant prediction together with the dynamic thickened flame model. LES results show that carbon monoxide emissions at the probe location are predicted in good agreement with the available test data, indicating two operating points with moderate pollutant levels and one operating point with CO concentrations below 10 ppm. Large mixture inhomogeneities are identified in the combustion chamber for all operating points. The investigation of mixture formation indicates that fuel-rich mixtures mainly emerge from the pilot stage resulting in high equivalence ratio streaks that lead to large CO levels at the combustor outlet. Flame quenching due to flame-wall-interaction are found to be of no relevance for CO in the investigated combustion chamber. Post-processing with Lagrangian tracer particles shows that cold air—from effusion cooling or stages that are not being supplied with fuel—lead to significant flame quenching, as mixtures are shifted to leaner equivalence ratios and the oxidation of CO is inhibited.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3