Abstract
Nanoparticles (NPs) have been proposed for enhanced oil recovery (EOR). The research has demonstrated marvelous effort to realize the mechanisms of nanoparticles EOR. Nevertheless, gaps still exist in terms of understanding the nanoparticles-driven interactions occurring at fluids and fluid–rock interfaces. Surface-active polymers or other surface additive materials (e.g., surfactants) have shown to be effective in aiding the dispersion stability of NPs, stabilizing emulsions, and reducing the trapping or retention of NPs in porous media. These pre-requisites, together with the interfacial chemistry between the NPs and the reservoir and its constituents, can result in an improved sweep efficiency. This paper investigates four types of polymer-coated silica NPs for the recovery of oil from water-wet Berea sandstones. A series of flooding experiments was carried out with NPs dispersed at 0.1 wt.% in seawater in secondary and tertiary oil recovery modes at ambient conditions. The dynamic interactions of fluids, fluid–rock, and the transport behavior of injected fluid in the presence of NPs were, respectively, studied by interfacial tension (IFT), spontaneous imbibition tests, and a differential pressure analysis. Core flooding results showed an increase in oil recovery up to 14.8% with secondary nanofluid injection compared to 39.7% of the original oil in place (OOIP) from the conventional waterflood. In tertiary mode, nanofluids increased oil recovery up to 9.2% of the OOIP. It was found that no single mechanism could account for the EOR effect with the application of nanoparticles. Instead, the mobilization of oil seemed to occur through a combination of reduced oil/water IFT, change in the rock surface roughness and wettability, and microscopic flow diversion due to clogging of the pores.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference49 articles.
1. Application of Nanoparticles in Enhanced Oil Recovery: A Critical Review of Recent Progress
2. Recovery rates, enhanced oil recovery and technological limits
3. Application of Nanoparticles-Based Technologies in the Oil and Gas Industry;Sandeep,2020
4. Zeta Potential Investigation and Mathematical Modeling of Nanoparticles Deposited on the Rock Surface to Reduce Fine Migration;Ahmadi,2011
5. Novel Applications of Nanoparticles for Future Enhanced Oil Recovery;Bennetzen,2014
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献