Aerodynamic Analysis of Coning Effects on the DTU 10 MW Wind Turbine Rotor

Author:

Sun Zhenye,Zhu Wei JunORCID,Shen Wen ZhongORCID,Zhong WeiORCID,Cao Jiufa,Tao Qiuhan

Abstract

The size of wind turbine rotors is still rapidly increasing, though many technical challenges emerge. Novel rotor designs emerge to satisfy this up-scale trend, such as downwind load-aligned concepts, which orients the loads along the blade spanwise to greatly decrease the bending moments at the root. As the studies on the aerodynamics of these rotor concepts using 3D body-fitted mesh are very limited, this paper establishes different cone configurations based on the DTU 10 MW reference rotor and conducts a series of simulations. It is found that the cone angle and the distance from the blade section to the tip vortex are two deterministic factors on conning. Upwind rotors have larger power output, less thrust, smaller wake deficit, and smaller influencing area than downwind rotors of the same size, which provides superior aerodynamic priority and benefits wind farm design. The largest upwind cone angle of 14.03°, among the cases studied, leads to the highest torque to thrust ratio which is 3.63% higher than the baseline rotor. The downwind load-aligned rotor, designed to reduce the blade root bending moments at large wind speed, performs worse at the present simulation conditions than an upwind rotor of the same size.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3