Study on the Formation Mechanism of Cutting Dead Metal Zone for Turning AISI4340 with Different Chamfering Tools

Author:

Wu Shujing,Wang DazhongORCID,Zhang Jiajia,Nadykto Alexey B.

Abstract

Tools with chamfered edges are often used in high speed machining of hard materials because they provide compelling cutting toughness and reduced tool wear. Chamfered tools are also responsible for the dead metal zone (DMZ). Through numerical simulation of orthogonal cutting with AISI 4340 steel, this paper examines the mechanism of the DMZ, the cutting speed, the impacts of the chamfer angle, and the coefficient of friction on the generation of the DMZ. The analysis is based upon the Arbitrary Lagrangian-Eulerian (ALE) finite element method (FEM) for the continuous process of chip formation. The different chamfered angles, cutting speeds, and friction coefficient conditions are utilized in the simulation. The research demonstrates that a zone of trapped material called DMZ has been formed beneath the chamfer and serves as an effective cutting edge of the tool. Additionally, the dead metal zone DMZ becomes smaller while the cutting speed increases or the friction coefficient decreases. The machining forces rise with increasing chamfer angles, rise with increasing friction coefficients, and fall with increasing cutting speed in both the cutting and thrust directions. In this paper, the effect of different chamfering tools on AISI 4340 steel using carbide tools in the simulation environment is studied. It has certain reference significance for studying the formation mechanism of the dead zone of difficult-to-machine materials such as AISI4340 and improving the processing efficiency and workpiece surface quality.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3