Agarose Gel-Templating Synthesis of a 3D Wrinkled Graphene Architecture for Enhanced Supercapacitor Performance

Author:

Shin Junhyeop,Park Jong-Kwon,Kim Geon Woo,Nam InhoORCID,Park SoominORCID

Abstract

The increasing use of rapidly fluctuating renewable energy sources, such as sunlight, has necessitated the use of supercapacitors, which are a type of energy storage system with high power. Chemically exfoliated graphene oxide (GO) is a representative starting material in the fabrication of supercapacitor electrodes based on reduced GO (rGO). However, the restacking of rGO sheets driven by π–π stacking interactions leads to a significant decrease in the electrochemically active surface area, leading to a loss of energy density. Here, to effectively inhibit restacking and construct a three-dimensional wrinkled structure of rGO (3DWG), we propose an agarose gel-templating method that uses agarose gel as a soft and removable template. The 3DWG, prepared via the sequential steps of gelation, freeze-drying, and calcination, exhibits a macroporous 3D structure and 5.5-fold higher specific capacitance than that of rGO restacked without the agarose template. Further, we demonstrate a “gel-stamping” method to fabricate thin-line patterned 3DWG, which involves the gelation of the GO–agarose gel within micrometer-sized channels of a customized polydimethylsiloxane (PDMS) mold. As an easy and low-cost manufacturing process, the proposed agarose gel templating method could provide a promising strategy for the 3D structuring of rGO.

Funder

Korea Institute for Advancement of Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3