Abstract
In this research study, numerical modelling and experimental casting of AA6111 strips, 250 mm wide, 6 mm thick, was conducted. The velocity of the molten AA6111 alloy at the nozzle slot outlet was raised to 2 m/s, whilst the belt speed was kept at 0.3 m/s. The numerical model demonstrates considerable turbulence/fluctuations in the flow of the molten AA6111 alloy in the HSBC process, rendering its free surface highly non-uniform and uneven. These discontinuites in the flow resulted from the sudden impact of molten metal onto the inclined refractory plane, and then onto the slowly moving belt. However, it has been determined that these surface variations are rapidly damped, and as such are not detrimental to final strip surface quality. Any surface perturbations remaining can be eliminated via hot plastic deformation. The experimental findings are in accordance with the model predictions. Furthermore, at high metal heads inside the delivery launder, the molten metal was observed to be flowing inwards towards the center of the strip, thereby filling the centre depression region, formed otherwise. The model predictions were validated against experimental findings. A surface roughness and microstructural analysis was also conducted to determine the surface and bulk quality of the as-cast strip.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献