Multiple Analytical Models to Evaluate the Impact of Carbon Nanotubes on the Electrical Resistivity and Compressive Strength of the Cement Paste

Author:

Piro Nzar ShakrORCID,Mohammed Ahmed SalihORCID,Hamad Samir Mustafa

Abstract

Cement paste is the most common construction material being used in the construction industry. Nanomaterials are the hottest topic worldwide, which affect the mechanical properties of construction materials such as cement paste. Cement pastes containing carbon nanotubes (CNTs) are piezoresistive intelligent materials. The electrical resistivity of cementitious composites varies with the stress conditions under static and dynamic loads as carbon nanotubes are added to the cement paste. In cement paste, electrical resistivity is one of the most critical criteria for structural health control. Therefore, it is essential to develop a reliable mathematical model for predicting electrical resistivity. In this study, four different models—including the nonlinear regression model (NLR), linear regression model (LR), multilinear regression model (MLR), and artificial neural network model (ANN)—were proposed to predict the electrical resistivity of cement paste modified with carbon nanotube. Furthermore, the correlation between the compressive strength of cement paste and the electrical resistivity model has also been proposed in this study and compared with models in the literature. In this respect, 116 data points were gathered and examined to develop the models, and 56 data points were collected for the proposed correlation model. Most critical parameters influencing the electrical resistivity of cement paste were considered during the modeling process—i.e., water to cement ratio ranged from 0.2 to 0.485, carbon nanotube percentage varied from 0 to 1.5%, and curing time ranged from 1 to 180 days. The electrical resistivity of cement paste with a very large number ranging from 0.798–1252.23 Ω.m was reported in this study. Furthermore, various statistical assessments such as coefficient of determination (R2), mean absolute error (MAE), root mean square error (RMSE), scatter index (SI), and OBJ were used to investigate the performance of different models. Based on statistical assessments—such as SI, OBJ, and R2—the output results concluded that the artificial neural network ANN model performed better at predicting electrical resistivity for cement paste than the LR, NLR, and MLR models. In addition, the proposed correlation model gives better performance based on R2, RMSE, MAE, and SI for predicting compressive strength as a function of electrical resistivity compared to the models proposed in the literature.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference60 articles.

1. Nanotechnology in Construction: A Roadmap for Development, in Nanotechnology in Construction 3;Bartos,2009

2. Fibre Reinforced Cementitious Compositeshttps://books.google.co.jp/books?hl=zh-CN&lr=&id=z0NZDwAAQBAJ&oi=fnd&pg=PP1&dq=Fibre+reinforced+cementitious+composites.&ots=bhtJopb-wN&sig=5v3vLY-bMBp8-nLtoQblgCO76fo#v=onepage&q=Fibre%20reinforced%20cementitious%20composites.&f=false

3. Electrically conductive behaviors and mechanisms of short-cut super-fine stainless wire reinforced reactive powder concrete

4. Comparison of compressive strength and electrical resistivity of cementitious composites with different nano- and micro-fillers

5. Cement and Concrete Nanoscience and Nanotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3