The Impact of Sea Embankment Reclamation on Greenhouse Gas GHG Fluxes and Stocks in Invasive Spartina alterniflora and Native Phragmites australis Wetland Marshes of East China

Author:

Li Jian,Leng Zhanrui,Wu Yueming,Li Guanlin,Ren Guangqian,Wu Guirong,Jiang Yongcan,Yuguda Taitiya KennethORCID,Du Daolin

Abstract

The introduction of embankment seawalls to limit the expansion of the exotic C4 perennial grass Spartina alteniflora Loisel in eastern China’s coastal wetlands has more than doubled in the past decades. Previous research focused on the impact of sea embankment reclamation on the soil organic carbon (C) and nitrogen (N) stocks in salt marshes, whereas no study attempted to assess the impact of sea embankment reclamation on greenhouse gas (GHG) fluxes in such marshes. Here we examined the impact of sea embankment reclamation on GHG stocks and fluxes of an invasive Spartina alterniflora and native Phragmites australis dominated salt marsh in the Dongtai wetlands of China’s Jiangsu province. Sea embankment reclamation significantly decreased soil total organic C by 54.0% and total organic N by 73.2%, decreasing plant biomass, soil moisture, and soil salinity in both plants’ marsh. It increased CO2 emissions by 38.2% and 13.5%, and reduced CH4 emissions by 34.5% and 37.1%, respectively, in the Spartina alterniflora and Phragmites australis marshes. The coastal embankment wall also significantly increased N2O emission by 48.9% in the Phragmites australis salt marsh and reduced emissions by 17.2% in the Spartina alterniflora marsh. The fluxes of methane CH4 and carbon dioxide CO2 were similar in both restored and unrestored sections, whereas the fluxes of nitrous oxide N2O were substantially different owing to increased nitrate as a result of N-loading. Our findings show that sea embankment reclamation significantly alters coastal marsh potential to sequester C and N, particularly in native Phragmites australis salt marshes. As a result, sea embankment reclamation essentially weakens native and invasive saltmarshes’ C and N sinks, potentially depleting C and N sinks in coastal China’s wetlands. Stakeholders and policymakers can utilize this scientific evidence to strike a balance between seawall reclamation and invasive plant expansion in coastal wetlands.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3