Using AI-MCDM Model to Boost Sustainable Energy System Development: A Case Study on Solar Energy and Rainwater Collection in Guangdong Province

Author:

Hsueh Sung-Lin,Feng Yuan,Sun Yue,Jia Ruqi,Yan Min-RenORCID

Abstract

Rural areas in southern China receive ample rainfall annually as well as over 1600 h of annual sunshine. Despite a generally severe urban–rural development imbalance, these rural areas feature well-developed basic infrastructure and diverse economic activities. Rural revitalization policies in these areas have emphasized the development of cultural and ecological tourism, which has spurred economic development and given rise to a trend of villa construction. Residential buildings sit on large areas where natural resources are abundant. These advantages are conducive to the development and use of sustainable resources. This study proposes an incentive policy encouraging rural residents to renovate their buildings to include rainwater conservation and solar power generation. The Delphi method, an analytic hierarchy process, and fuzzy logic theory were combined to establish an AI-MCDM model, with applications of artificial intelligence and multiple-criteria decision making. Using Conghua District, Guangdong Province as an example, the study suggested that the model is beneficial to increasing the willingness of rural residents to reconstruct and renovate their residences, promoting the development of a low-carbon ecological region, Wenquan Township. We conducted the Delphi process twice to assess and validate incentives for installing natural resource conservation structures in agricultural areas. Nine criteria were identified, which can be divided into three main dimensions of participation situation, generating capacity, and storage facilities. The proposed AI-MCDM model developed using the Delphi–Fuzzy Analytic Hierarchy Process Model has high objectivity and can support rural areas in developing low-carbon, sustainable characteristics. The findings can serve as a reference for governments formulating incentives to encourage the installation of rainwater conservation and solar energy generation structures by rural households.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3