Long-Term Impact of Transhumance Pastoralism and Associated Disturbances in High-Altitude Forests of Indian Western Himalaya

Author:

Haq Shiekh MarifatulORCID,Yaqoob Umer,Calixto Eduardo SoaresORCID,Kumar ManojORCID,Rahman Inayat UrORCID,Hashem Abeer,Abd_Allah Elsayed FathiORCID,Alakeel Maha Abdullah,Alqarawi Abdulaziz A.,Abdalla MohnadORCID,Lone Fayaz A.,Khan Muhammad Azhar,Khan Uzma,Ijaz Farhana

Abstract

The Himalayan Mountains are geodynamical important, featuring a wide climatic range with a rich diversity of flora, fauna, human communities, culture, and social set-up. In recent decades, due to constant anthropogenic pressure and considerable changes witnessed in the climate of the region, species of this region are threatened. Here, we assessed the impact of nomadic settlement and associated disturbances on plant species composition, diversity parameters, ecosystem properties, and fire incidence in high-altitude forests of Western Himalaya, India. Based on the distance between nomadic settlement location and forest, we classified forest as near nomadic settlement (NNS) or away nomadic settlement (ANS) forest types. We found a significant variation in plant species composition between forest types. Three species, namely, Sibbaldia cuneata, Poa annua, and Abies pindrow, contribute 25% of the cumulative variation in plant species composition. Studying live plants, we found a significant difference only for density, in which ANS had a higher average density than NNS. Considering dead plants, we found a significant difference in all nine plant-related parameters evaluated between sites. NNS had a higher value of all parameters evaluated, except for height, which was higher in ANS sites. ANS forest type show 1.3 times more average carbon stock (160.39 ± 59.03 MgCha−1; mean ± SD) than NNS forest type (120.40 ± 51.74 MgCha−1). We found a significant difference in plant diversity evaluated between forest types. ANS had higher values of Margalef and Fisher diversity but lower values of evenness. We found that NSS had significantly higher values of fire incidences, whereas ANS has a higher normalized differential vegetation index and enhanced vegetation index. Overall, our study showed that species composition, diversity, and fire incidence are strongly impacted due to nomadic settlements. These findings are paramount for designing appropriate livelihood options for indigenous communities and management policies of the long-term forest harvest to achieve global goals and the UN Decade on Ecosystem Restoration targets (2021–2030) to protect the sustainable development of forest mountainous regions.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3