Abstract
Modern masonry structures, apart from having a load-bearing function, are more and more subjected to additional non-structural requirements related to, e.g., thermal insulation and moisture control. This has respectively led to the introduction of thermal break layers, in practice often executed using autoclaved aerated concrete (AAC) blocks, and damp proof courses (DPC) in masonry walls. These modifications have an impact on the mechanical characteristics of the masonry, such as the shear strength. In this paper, an extensive experimental campaign is therefore conducted on masonry triplets to investigate the initial shear strength of concrete block and clay brick masonry, including AAC blocks. The impact of the the presence of a polyethylene DPC layer is also studied. Moreover, the position of the DPC membrane is varied, i.e., directly on top of the brick (which is generally not recommended yet common in construction practice) and in the middle of the mortar joint. In total, 138 shear tests were performed according to the EN 1052-3 standard, with low to moderate precompression levels. The test results focus on the differences in friction angle, shear modulus, and friction coefficient. It is concluded that the presence of an AAC block decreases the initial shear strength to a value which is lower than the one assumed by Eurocode 6. Moreover, when adding a DPC membrane, the shear strength is reduced even further to almost zero, in particular when the membrane is not put in the middle of the mortar joint.
Funder
VLAIO - Flanders Innovation & Entrepreneurship
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献