Low-Carbon Economic Dispatch Based on a CCPP-P2G Virtual Power Plant Considering Carbon Trading and Green Certificates

Author:

Yan Qingyou,Ai Xingbei,Li Jinmeng

Abstract

To improve the economic benefits of power systems in the process of achieving multi-energy complementation and decarbonization, this paper proposes a dispatching optimization model for virtual power plants (VPP) that considers carbon trading and green certificates. Firstly, the structure of the VPP system integrating wind and solar generators (WP and PV), power-to-gas (P2G), carbon capture power plants (CCPP) and price-based demand response (PBDR) is established. Secondly, the two-way interactive trading models among the VPP, carbon trading and green certification market are constructed. Then, the dispatching optimization model of the VPP is constructed. Finally, the numerical example is solved and analyzed by the chaotic particle swarm optimization algorithm, which verifies the rationality and effectiveness of the new model. The results show that: (1) when the VPP considers the CCPP-P2G, the cost of the system is reduced by USD 2550.48, while the CO2 emissions are reduced by nearly 50%; (2) the addition of PBDR reduces the CO2 emissions of the thermal power unit, which has reduced the cost of carbon tax by nearly 27.8%, further reducing the cost of the VPP; (3) the introduction of the carbon trading and green certificate market has reduced the operating cost of the VPP by nearly 22.24%.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference34 articles.

1. Comprehensive evaluation of shared energy storage towards new energy accommodation scenario under targets of carbon emission peak and carbon neutrality;Qiu;Electr. Power Autom. Equipment.,2021

2. Present situation and future prospect of renewable energy in China

3. Statement by H.E. Xi Jinping President of the People’s Republic of China at the General Debate of the 75th Session of the United Nations General Assembly;Jinping;Peace,2020

4. China Renewable Energy Development Report;China Renew. Energy Dev. Rep.,2021

5. Day-ahead optimal scheduling strategy of virtual power plant for environment with multiple uncertainties;Lin;Electr. Power Autom. Equip.,2021

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3