A Machine Learning-Based Model to Predict In-Hospital Mortality of Lung Cancer Patients: A Population-Based Study of 523,959 Cases

Author:

Tran Que N. N.1,Le Minh-Khang2,Kondo Tetsuo2,Moriguchi Takeshi1ORCID

Affiliation:

1. Emergency & Critical Care Medicine Department, Graduate School of Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi Prefecture, 1110 Shimokato, Chuo City 409-3898, Japan

2. Pathology Department, Graduate School of Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi Prefecture, 1110 Shimokato, Chuo City 409-3898, Japan

Abstract

Background: Stratify new lung cancer patients based on the risk of in-hospital mortality rate after diagnosis. Methods: 522,941 lung cancer cases with available data on the Surveillance, Epidemiology, and End Results (SEER) were analyzed for the predicted probability based on six fundamental variables including age, gender, tumor size, T, N, and AJCC stages. The patients were randomly assigned to the training (n = 115,145) and validation datasets (n = 13,017). The remaining cohort with missing values (n = 394,779) was then combined with the primary lung tumour datasets (n = 1018) from The Cancer Genome Atlas, Lung Adenocarcinoma and Lung Squamous Cell Carcinoma projects (TCGA-LUAD & TCGA-LUSC) for external validation and sensitivity analysis. Results: Receiver Operating Characteristic (ROC) analyses showed high discriminatory power in the training and internal validation cohorts (Area under the curve [AUC] of 0.78 (95%CI = 0.78–0.79) and 0.78 (95%CI = 0.77–0.79), respectively), whereas that of the model on external validation data was 0.759 (95%CI = 0.757–0.761). We developed a static nomogram, a web app, and a risk table based on a logistic regression model using algorithm-selected variables. Conclusions: Our model can stratify lung cancer patients into high- and low-risk of in-hospital mortality to assist clinical further planning.

Publisher

MDPI AG

Subject

Pulmonary and Respiratory Medicine

Reference25 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3