Abstract
In the last ten years, the Portland cement industry has received wide criticism due to its related high embodied energy and carbon dioxide footprint. Recently, numerous “clean” strategies and solutions were developed. Among these, geopolymer technology is gaining growing interest as a functional way to design more eco-friendly construction materials and for waste management issues suffered by various industries. Previous research has highlighted the attractive engineering properties of geopolymeric materials, especially in terms of mechanical properties and durability, resulting in even higher performance than ordinary concrete. This review provides a comprehensive analysis of current state-of-the-art and implementations on geopolymer concrete materials, investigating how the key process factors (such as raw materials, synthesis regime, alkali concentration, water dosage, and reinforcement fillers) affect the rheological, microstructural, durability, and mechanical properties. Finally, the paper elucidates some noteworthy aspects for future research development: innovative geopolymer-based formulations (including alkali-activated blends for additive manufacturing and thermo-acoustic insulating cellular compounds), concrete applications successfully scaled in the civil-architectural fields, and the perspective directions of geopolymer technology in terms of commercialization and large-scale diffusion.
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献