Affiliation:
1. Biological Sciences Department, Munster Technological University Bishopstown Campus, T12 P928 Cork, Ireland
Abstract
Encapsulated medication is a common method of administering therapeutic treatments. As researchers explore alternative therapies, it is likely that encapsulation will remain a feature of these novel treatments, particularly when routes of delivery are considered. For instance, alginate-encapsulation is often favoured where gastric digestion poses an obstacle. When exposed to cations (namely Ca2+), alginate readily forms gels that are resilient to acidic conditions and readily dissociate in response to mid-range pH. This action can be extremely valuable for the encapsulation of phages. The efficient delivery of phages to the intestine is important when considering mycobacteriophage (MP) therapy (or MP prophylaxis) for disseminated mycobacterial infections and chronic gastroenteritis conditions. This study presents the design and in vitro validation of an alginate-encapsulated MP capable of releasing phages in a pH-dependent manner. Ultimately, it is shown that encapsulated phages pretreated with simulated gastric fluid (SGF) are capable of releasing viable phages into simulated intestinal fluid (SIF) and thereby reducing the mycobacterial numbers in spiked SIF by 90%. These findings suggest that alginate encapsulation may be a viable option for therapeutic and prophylactic approaches to the management of intestinal mycobacterial disease, such as Johne’s disease.
Funder
MTU RISAM Postgraduate Fellowship
Subject
Virology,Infectious Diseases