Micro Non-Uniform Linear Array (MNULA) for Ultrasound Plane Wave Imaging

Author:

Tang YujiaORCID,Li Zhangjian,Cui YaoyaoORCID,Yang ChenORCID,Lv Jiabing,Jiao YangORCID

Abstract

Ultrasound plane wave imaging technology has been applied to more clinical situations than ever before because of its rapid imaging speed and stable imaging quality. Most transducers used in plane wave imaging are linear arrays, but their structures limit the application of plane wave imaging technology in some special clinical situations, especially in the endoscopic environment. In the endoscopic environment, the size of the linear array transducer is strictly miniaturized, and the imaging range is also limited to the near field. Meanwhile, the near field of a micro linear array has serious mutual interferences between elements, which is against the imaging quality of near field. Therefore, we propose a new structure of a micro ultrasound linear array for plane wave imaging. In this paper, a theoretical comparison is given through sound field and imaging simulations. On the basis of primary work and laboratory technology, micro uniform and non-uniform linear arrays were made and experimented with the phantom setting. We selected appropriate evaluation parameters to verify the imaging results. Finally, we concluded that the micro non-uniform linear array eliminated the artifacts better than the micro uniform linear array without the additional use of signal processing methods, especially for target points in the near-field. We believe this study provides a possible solution for plane wave imaging in cramped environments like endoscopy.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3