Using Geiger Dosimetry EKO-C Device to Detect Ionizing Radiation Emissions from Building Materials

Author:

Gliniak MaciejORCID,Dróżdż Tomasz,Kurpaska Sławomir,Lis Anna

Abstract

The purpose of the article is to check and assess what radiation is emitted by particular building materials with the passage of time. The analysis was performed with the EKO-C dosimetry device from Polon-Ekolab. The scope of the work included research on sixteen selected construction materials, divided into five groups. The analysis of the results showed that samples such as bricks (first group) and hollow blocks (second group) emit the highest radiation in the tested objects. When comparing these materials, the highest value was recorded when measuring the ceramic block of 15.76 mSv·yr−1. Taking into account the bricks, the highest value of radiation was shown by a full clinker brick, 11.3 mSv·yr−1. Insulation materials and finishing boards are two other groups of building materials that have been measured. They are characterised by a low level of radiation. In the case of materials for thermal insulation, the highest condition was demonstrated by graphite polystyrene of 4.463 mSv·yr−1, while among finishing boards, the highest value of radiation was recorded for the measurement of gypsum board of 3.76 mSv·yr−1. Comparing the obtained test results to the requirements of the Regulation of the Council of Ministers on ionizing radiation dose limits applicable in Poland, it can be noted that the samples examined individually do not pose a radiation risk to humans. When working with all types of samples, the radiation doses are added up. According to the guidelines of the regulation, the total radiation dose does not exceed 50 mSv·yr−1 and does not constitute a threat to human health.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Assessment of the Environmental Impacts of Wastewater Treatment in Tunisia;Journal of Water and Environment Technology;2024

2. Review—Measurements of Ionizing Radiations Using Micromechanical Sensors;ECS Journal of Solid State Science and Technology;2022-05-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3