Drum Water Level Control Based on Improved ADRC

Author:

Pu CuipingORCID,Zhu YichengORCID,Su Jianbo

Abstract

Drum water level systems show strong disturbance, big inertia, large time delay, and non-linearity characteristics. In order to improve the antidisturbance performance and robustness of the traditional active disturbance rejection controller (ADRC), an improved linear active disturbance rejection controller (ILADRC) for drum water level is designed. On the basis of the linear active disturbance rejection controller (LADRC) structure, an identical linear extended state observer (ESO) is added with the same parameters as that of the original one. The estimation error value of the total disturbance is introduced, and the estimation error of the total disturbance is compensated, which can improve the control system’s ability to suppress unknown disturbances, so as to improve the antidisturbance performance and robustness. The antijamming performance and robustness of LADRC and ILADRC for drum water level are simulated and analyzed under the influence of external disturbance and model parameter variation. Results show that the proposed control system ILADRC has shorter settling time, smaller overshot, and strong anti-interference ability and robustness. It has better performance than the LADRC and has certain application value in engineering.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Reference30 articles.

1. Design of Improved ADRC for Drum Water Level Regulation of Ship Boiler;Zhao;Navig. China,2018

2. Study on Fuzzy Self-Adaptive PID Control System of Biomass Boiler Drum Water

3. Research on water level optimal control of boiler drum based on dual heuristic dynamic programming;Huang,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3