Focus on the Avalanche Breakdown Characteristic of Si- and InP-Based APDs Irradiated by Fast Neutrons

Author:

Kang Jianbin,Li Qian,Fu Xiang,Chen Feiliang,Li MoORCID

Abstract

The Si- and InP-based APDs as the most important weak light semiconductor photodetectors to have achieved commercial success and are widely used in irradiation environments. Investigating the influencing mechanism of neutron irradiation on the above two types of APDs is of scientific and practical importance. In this paper, the dark current and gain characteristics of Si- and InP-based APDs around breakdown voltage were analyzed in detail before and after irradiation. The increase of dark current and the decrease of gain were observed for both the neutron irradiated Si- and InP-based APDs. Generation centers induced by neutrons are responsible for the increased dark current. The decrease of gain can be attributed to the increase of multiplied dark current and the change of electric field distribution in APD. The Si-based APD exhibits soft breakdown with the breakdown voltage reduced by ~8 V under the neutron fluence of 1.0 × 1012 cm−2, while the soft breakdown occurs along with a small change of breakdown voltage of ~1.5 V under the neutron fluence of 1.0 × 1013 cm−2 for InP-based APD. The difference in the change of breakdown voltage probably occurs because the Si-based APD uses p-doped Si as the multiplication layer, in which the neutron induced carrier removing effect cannot be ignored to keep the electric field distribution away from the optimal state. Therefore, using an intrinsic multiplication layer in APD is helpful to improve the neutron radiation resistance. The findings here are not only useful for the radiation hardened design of APD, but also deepen the understanding of irradiation mechanism.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3