Sapphire Selective Laser Etching Dependence on Radiation Wavelength and Etchant

Author:

Butkutė AgnėORCID,Sirutkaitis Romualdas,Gailevičius DariusORCID,Paipulas Domas,Sirutkaitis ValdasORCID

Abstract

Transparent and high-hardness materials have become the object of wide interest due to their optical and mechanical properties; most notably, concerning technical glasses and crystals. A notable example is sapphire—one of the most rigid materials having impressive mechanical stability, high melting point and a wide transparency window reaching into the UV range, together with impressive laser-induced damage thresholds. Nonetheless, using this material for 3D micro-fabrication is not straightforward due to its brittle nature. On the microscale, selective laser etching (SLE) technology is an appropriate approach for such media. Therefore, we present our research on C-cut crystalline sapphire microprocessing by using femtosecond radiation-induced SLE. Here, we demonstrate a comparison between different wavelength radiation (1030 nm, 515 nm, 343 nm) usage for material modification and various etchants (hydrofluoric acid, sodium hydroxide, potassium hydroxide and sulphuric and phosphoric acid mixture) comparison. Due to the inability to etch crystalline sapphire, regular SLE etchants, such as hydrofluoric acid or potassium hydroxide, have limited adoption in sapphire selective laser etching. Meanwhile, a 78% sulphuric and 22% phosphoric acid mixture at 270 °C temperature is a good alternative for this process. We present the changes in the material after the separate processing steps. After comparing different processing protocols, the perspective is demonstrated for sapphire structure formation.

Funder

European Regional Development Fund

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3