Removal Modeling and Experimental Verification of Magnetorheological Polishing Fused Silica Glass

Author:

Zhang Limin,Li Weixing,Zhou Jiakang,Lu MingmingORCID,Liu Qiang,Du Yongsheng,Yang Yakun

Abstract

Compared to conventional polishing methods, magnetorheological polishing has no subsurface damage and a has good polishing effect, which is suitable for fused silica glass surface processing. However, the existing magnetorheological polishing material removal model has low processing efficiency and uneven removal, which cannot realize the deterministic processing of parts. The material removal (MR) model of fused silica glass is established by convolving the dwell time with the material removal function. The residence time is Fourier transformed. The consequence of process variable such as machining time, workpiece rotational frequency, machining gap and X-direction deflection on the MR of workpiece interface are analyzed. Experiments verify the validity of the material removal model. The surface precision PV value of the workpiece surface under the optimal process parameters was decreased from 7.959 nm to 0.609 nm for machining. The experiment results indicate that the established MR model can be implemented as the deterministic MR of the optical surface and ameliorate the surface accuracy of the workpiece surface.

Funder

Changchun Science and Technology Development Plan Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research progress of magnetorheological polishing technology: a review;Advances in Manufacturing;2024-05-16

2. Optimization of MRP quartz glass process parameters based on BP-PSO;Materials and Manufacturing Processes;2024-03-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3