Investigation of Cylindrical Piezoelectric and Specific Multi-Channel Circular MEMS-Transducer Array Resonator of Ultrasonic Ablation

Author:

Liou Jian-Chiun,Peng Chih-WeiORCID,Chen Zhen-Xi

Abstract

Background: A cylindrical piezoelectric element and a specific multi-channel circular microelectromechanical systems (MEMS)-transducer array of ultrasonic system were used for ultrasonic energy generation and ablation. A relatively long time is required for the heat to be conducted to the target position. Ultrasound thermal therapy has great potential for treating deep hyperplastic tissues and tumors, such as breast cancer and liver tumors. Methods: Ultrasound ablation technology produces thermal energy by heating the surface of a target, and the heat gradually penetrates to the target’s interior. Beamforming was performed to observe energy distribution. A resonance method was used to generate ablation energy for verification. Energy was generated according to the coordinates of geometric graph positions to reach the ablation temperature. Results: The mean resonance frequency of Channels 1–8 was 2.5 MHz, and the cylindrical piezoelectric ultrasonic element of Channel A was 4.2546 Ω at 5.7946 MHz. High-intensity ultrasound has gradually been applied in clinical treatment. Widely adopted, ultrasonic hyperthermia involves the use of high-intensity ultrasound to heat tissues at 42–45 °C for 30–60 min. Conclusion: In the ultrasonic energy method, when the target position reaches a temperature that significantly reduces the cell viability (46.9 °C), protein surface modification occurs on the surface of the target.

Funder

Taipei Medical University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3