A Battery-Less Wireless Respiratory Sensor Using Micro-Machined Thin-Film Piezoelectric Resonators

Author:

Moradian Sina,Akhkandi ParvinORCID,Huang JunyiORCID,Gong Xun,Abdolvand Reza

Abstract

In this work, we present a battery-less wireless Micro-Electro-Mechanical (MEMS)-based respiration sensor capable of measuring the respiration profile of a human subject from up to 2 m distance from the transceiver unit for a mean excitation power of 80 µW and a measured SNR of 124.8 dB at 0.5 m measurement distance. The sensor with a footprint of ~10 cm2 is designed to be inexpensive, maximize user mobility, and cater to applications where disposability is desirable to minimize the sanitation burden. The sensing system is composed of a custom UHF RFID antenna, a low-loss piezoelectric MEMS resonator with two modes within the frequency range of interest, and a base transceiver unit. The difference in temperature and moisture content of inhaled and exhaled air modulates the resonance frequency of the MEMS resonator which in turn is used to monitor respiration. To detect changes in the resonance frequency of the MEMS devices, the sensor is excited by a pulsed sinusoidal signal received through an external antenna directly coupled to the device. The signal reflected from the device through the antenna is then analyzed via Fast Fourier Transform (FFT) to extract and monitor the resonance frequency of the resonator. By tracking the resonance frequency over time, the respiration profile of a patient is tracked. A compensation method for the removal of motion-induced artifacts and drift is proposed and implemented using the difference in the resonance frequency of two resonance modes of the same resonator.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3