Temperature Compensation of the MEMS-Based Electrochemical Seismic Sensors

Author:

Xu ChaoORCID,Wang Junbo,Chen Deyong,Chen JianORCID,Qi Wenjie,Liu Bowen,Liang Tian,She Xu

Abstract

Electrochemical seismic sensors that employ liquid as their inertial masses have the advantages of high performances in the low-frequency domain and a large working inclination. However, the surrounding temperature changes have serious impacts on the sensitivities of the sensors, which makes them unable to work as expected. This paper studied the temperature characteristics of electrochemical seismic sensors based on MEMS (micro–electro–mechanical systems), and analyzed the influences of the temperature effects on the open-loop and closed-loop amplitude-frequency curves. Most importantly, the temperature compensation circuits based on thermistors were developed, which effectively adjusted pole frequencies and sensitivity coefficients, and finally realized the real-time temperature compensation for both open-loop and closed-loop measurements for the first time. The results showed that in the temperature range of −10 °C ~ +40 °C, and with the 3 dB bandwidth range of 0.01 Hz ~ 40 Hz, the change of the maximum sensitivity was reduced from about 25 dB before temperature compensation to less than 2 dB after temperature compensation.

Funder

Strategic Priority Research Program (A) of the Chinese Academy of Sciences

National Science Fund for Distinguished Young Scholars

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Reference23 articles.

1. Passive low frequency spectral analysis: Exploring a new field in geophysics;Graf;World Oil,2007

2. Ocean Bottom Seismometer: Design and Test of a Measurement System for Marine Seismology

3. Next Generation Robust Low Noise Seismometer for Nuclear Monitoring

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3