Research on CeO2 Activated Carbon Electrode Capacitance Method for Sulfate Removal from Mine Water

Author:

Feng Xiujuan1234ORCID,Zou Yanjun234,Condé Sékou Mohamed134,Wang Xiaoqing134,Dong Chengliang134ORCID

Affiliation:

1. School of Mines, China University of Mining and Technology, Xuzhou 221116, China

2. School of Civil and Surveying Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China

3. Industrial Technology Innovation Center for Ecological Restoration of Industrial and Mining Sites in the Petroleum and Chemical Industry, Xuzhou 221116, China

4. Mechano Chemistry Research Institute, China University of Mining and Technology, Xuzhou 221116, China

Abstract

Sulfate is a typical characteristic pollutant in mine water. Because of its high concentration and large discharge of mine water, it has become a difficult problem in mineral exploitation. Capacitive deionization (CDI) is an innovative and economical removal technology. There are few reports on the use of CDI to remove SO42− from mine water. In this study, a CeO2 activated carbon electrode with good wettability, excellent electrochemical performance, and suitable pore structure was prepared by the sol-gel method. The application of the CeO2 activated carbon electrode to the capacitive method for treating high SO42− mine water was investigated using simulated wastewater and actual mine water. The study structure shows that CeO2:activated carbon (AC) has the best wettability, the highest specific capacitance, and the lowest electrical conductivity when the mass ratio of CeO2 is 5%. At 100 mg/L, the electrode has the maximum SO42− ion specific adsorption capacity (SAC). At 1 V and 20 mL/min, this value is measured. The electrode has a SAC value of 9.36 mg/g, far higher than the AC electrode’s 4.1 mg/g. The effect of CDI process factors such the voltage, flow rate, and initial concentration was studied to find the best treatment method. SAC retention is 91% after 10 adsorption–desorption cycles, demonstrating outstanding electrode performance. Under the best CDI process (1.4 volts, 30 mL/min), mine water was treated. After 20 cycles of treatment, the concentration of SO42− in mine water decreased from 1170 mg/L to 276.46 mg/L, and the removal rate was 76.37%. This study proved that the CeO2 modified activated carbon electrode capacitance method can effectively remove sulfate ions and other ions from mine water.

Funder

National Key R&D Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3