A Novel Generalized Clapeyron Equation-Based Model for Capturing the Soil Freezing Characteristics Curve of Saline Soil: Validation by Small Sample Lab and Field Experiments

Author:

Wang Liwen1ORCID,Wang Xianghao12ORCID,Han Juan13,Wang Chaozi1,Zhang Chenglong1,Huo Zailin1

Affiliation:

1. Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China

2. College of Water Conservancy & Civil Engineering, Northeast Agricultural University, Harbin 150030, China

3. Department of Geology and Surveying and Mapping, Shanxi Institute of Energy, Jinzhong 030600, China

Abstract

The soil freezing characteristic curve (SFCC) describes the relationship between the freezing point and unfrozen water content, which are two critical parameters in depicting the heat, solute, and water transport in frozen soil. In this paper, we propose a novel Generalized Clapeyron Equation (GCE)-based model, the GCE-Salt Model, to better capture the SFCC in frozen soil in the presence of solute. It keeps the matric potential Ψf in the GCE as its original meaning and incorporates the effect of solute potential in the equilibrium freezing temperature. The performance of our GCE-Salt Model was validated by both lab and field experimental data and compared with related models (Combined Model and GCE-Tan Model). The GCE-Salt Model performed exceptionally well in extremely saline soil and it performed well in both non-saline and saline soil. (1) Our GCE-Salt Model could capture the SFCC of non-saline soil equally as well as the Combined Model (NSE = 0.866); (2) our GCE-Salt Model performed similarly well as the Combined Model and a little better than the GCE-Tan Model for the slightly to highly saline soil (NSE ≥ 0.80 for three models); and (3) our GCE-Salt Model (NSE = 0.919) beat the Combined Model (NSE = 0.863) and the GCE-Tan Model (NSE = 0.62) in capturing the SFCC of extremely saline soil, mainly because the inherent expression of our GCE-Salt Model can more accurately capture the freezing point. Our findings highlight the effect of solute potential on the ice–water change and could improve the understanding of the effect of freezing and thawing on the thermal–hydrological processes, structure of saline soil, and landscape evolution in cold regions.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3