Affiliation:
1. Institute of Electronic and Sensor Materials, Faculty of Materials Science and Materials Technology, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany
2. Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
3. Freiberg Center for Water Research-ZeWaF, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany
Abstract
Gallic acid (GA) is one of the most important polyphenols, being widely used in the food, cosmetic, and pharmaceutical industries due to its biological effects such as antioxidant, antibacterial, anticancer, antiviral, anti-inflammatory, and cardioprotective properties. Hence, simple, fast, and sensitive determination of GA is of particular importance. Considering the fact that GA is an electroactive compound, electrochemical sensors offer great potential for GA quantitation due to their fast response time, high sensitivity, and ease of use. A simple, fast, and sensitive GA sensor was fabricated on the basis of a high-performance bio-nanocomposite using spongin as a natural 3D polymer, atacamite, and multi-walled carbon nanotubes (MWCNTs). The developed sensor showed an excellent response toward GA oxidation with remarkable electrochemical features due to the synergistic effects of 3D porous spongin and MWCNTs, which provide a large surface area and enhance the electrocatalytic activity of atacamite. At optimal conditions by differential pulse voltammetry (DPV), a good linear relationship was obtained between peak currents and GA concentrations in a wild linear range of 500 nM to 1 mM. Subsequently, the proposed sensor was used to detect GA in red wine as well as in green and black tea, confirming its great potential as a reliable alternative to conventional methods for GA determination.
Funder
the publication fund of the TU Bergakademie Freiberg
Subject
Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献