Rapid and Sensitive Diagnosis of COVID-19 Using an Electricity-Free Self-Testing System

Author:

Li Sheng1,Guo Wenlong1,Xiao Minmin1,Chen Yulin1,Luo Xinyi1,Xu Wenfei2,Zhou Jianhua13ORCID,Wang Jiasi13

Affiliation:

1. Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China

2. Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China

3. School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China

Abstract

Rapid and sensitive detection of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is essential for early diagnosis and effective treatment. Nucleic acid testing has been considered the gold standard method for the diagnosis of COVID-19 for its high sensitivity and specificity. However, the polymerase chain reaction (PCR)-based method in the central lab requires expensive equipment and well-trained personnel, which makes it difficult to be used in resource-limited settings. It highlights the need for a sensitive and simple assay that allows potential patients to detect SARS-CoV-2 by themselves. Here, we developed an electricity-free self-testing system based on reverse transcription loop-mediated isothermal amplification (RT-LAMP) that allows for rapid and accurate detection of SARS-CoV-2. Our system employs a heating bag as the heat source, and a 3D-printed box filled with phase change material (PCM) that successfully regulates the temperature for the RT-LAMP. The colorimetric method could be completed in 40 min and the results could be read out by the naked eye. A ratiometric measurement for exact readout was also incorporated to improve the detection accuracy of the system. This self-testing system is a promising tool for point-of-care testing (POCT) that enables rapid and sensitive diagnosis of SARS-CoV-2 in the real world and will improve the current COVID-19 screening efforts for control and mitigation of the pandemic.

Funder

Shenzhen Research Funding Program

National Key Research and Development Program of China

National Natural Science Foundation of China

Zhejiang Provincial Natural Science Foundation of China

Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3