Conjugated Aggregation-Induced Fluorescent Materials for Biofluorescent Probes: A Review

Author:

Wang Zheng1,Ma Ji1,Li Changlin1,Zhang Haichang1

Affiliation:

1. Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Province (QUST), School of Polymer Science and Engineering, Qingdao University of Science and Technology, 53-Zhengzhou Road, Qingdao 266042, China

Abstract

The common fluorescent conjugated materials present weak or quenching luminescent phenomena in the solid or aggregate state (ACQ), which limits their applications in medicine and biology. In the last two decades, certain materials, named aggregation-induced emission (AIE) fluorescent materials, have exhibited strong luminescent properties in the aggregate state, which can overcome the ACQ phenomenon. Due to their intrinsic properties, the AIE materials have been successfully used in biolabeling, where they can not only detect the species of ions and their concentrations in organisms, but can also monitor the organisms’ physiological activity. In addition, these kinds of materials often present non-biological toxicity. Thus, AIE materials have become some of the most popular biofluorescent probe materials and are attracting more and more attention. This field is still in its early infancy, and several open challenges urgently need to be addressed, such as the materials’ biocompatibility, metabolism, and so on. Designing a high-performance AIE material for biofluorescent probes is still challenging. In this review, based on the molecular design concept, various AIE materials with functional groups in the biofluorescent probes are introduced, including tetrastyrene materials, distilbene anthracene materials, triphenylamine materials, and hexaphenylsilole materials. In addition, according to the molecular system design strategy, the donor–acceptor (D-A) system and hydrogen-bonding AIE materials used as biofluorescent probes are reviewed. Finally, the biofluorescent probe design concept and potential evolution trends are discussed. The final goal is to outline a theoretical scaffold for the design of high-performance AIE biofluorescent probes that can at the same time further the development of the applications of AIE-based biofluorescent probes.

Funder

Young Taishan Scholars

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3