Community Abundance of Resprouting in Woody Plants Reflects Fire Return Time, Intensity, and Type

Author:

Shen Yicheng12ORCID,Cai Wenjia3ORCID,Prentice I. Colin13,Harrison Sandy P.12ORCID

Affiliation:

1. Leverhulme Centre for Wildfires, Environment and Society, Imperial College London, South Kensington, London SW7 2BW, UK

2. School of Archaeology, Geography and Environmental Science, University of Reading, Whiteknights, Reading RG6 6AH, UK

3. Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot SL5 7PY, UK

Abstract

Plants in fire-prone ecosystems have evolved a variety of mechanisms to resist or adapt to fire. Post-fire resprouting is a key adaptation that promotes rapid ecosystem recovery and hence has a major impact on the terrestrial carbon cycle. However, our understanding of how the incidence of resprouting varies in different fire regimes is largely qualitative. The increasing availability of plant trait data and plot-based species cover data provides an opportunity to quantify the relationships between fire-related traits and fire properties. We investigated the quantitative relationship between fire frequency (expressed as the fire return time) and the proportion of resprouters in woody plants using plot data on species cover from Australia and Europe. We also examined the relationship between the proportion of resprouters and gross primary production (GPP) and grass cover, where GPP was assumed to reflect fuel loads and hence fire intensity, while grass cover was considered to be an indicator of the likelihood of ground fire and the speed of fire spread, using generalised linear modelling. The proportion of resprouting species decreased significantly as the fire return time increased. When the fire return time was considered along with other aspects of the fire regime, the proportion of resprouters had significant negative relationships with the fire return time and grass cover and a significant positive relationship with GPP. These findings demonstrate that plants with the ability to resprout occur more often where fire regimes are characterised by high-frequency and high-intensity crown fires. Establishing quantitative relationships between the incidence of resprouting and the fire return time and fire type provides a basis for modelling resprouting as a consequence of the characteristics of the fire regime, which in turn makes it possible to model the consequences of changing fire regimes on ecosystem properties.

Funder

Leverhulme Centre for Wildfires, Environment and Society

Publisher

MDPI AG

Subject

Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3