Causal Reasoning: Towards Dynamic Predictive Models for Runoff Temporal Behavior of High Dependence Rivers

Author:

Molina José-LuisORCID,Zazo SantiagoORCID,Martín Ana-María

Abstract

Nowadays, a noteworthy temporal alteration of traditional hydrological patterns is being observed, producing a higher variability and more unpredictable extreme events worldwide. This is largely due to global warming, which is generating a growing uncertainty over water system behavior, especially river runoff. Understanding these modifications is a crucial and not trivial challenge that requires new analytical strategies like Causality, addressed by Causal Reasoning. Through Causality over runoff series, the hydrological memory and its logical time-dependency structure have been dynamically/stochastically discovered and characterized. This is done in terms of the runoff dependence strength over time. This has allowed determining and quantifying two opposite temporal-fractions within runoff: Temporally Conditioned/Non-conditioned Runoff (TCR/TNCR). Finally, a successful predictive model is proposed and applied to an unregulated stretch, Mijares river catchment (Jucar river basin, Spain), with a very high time-dependency behavior. This research may have important implications over the knowledge of historical rivers´ behavior and their adaptation. Furthermore, it lays the foundations for reaching an optimum reservoir dimensioning through the building of predictive models of runoff behavior. Regarding reservoir capacity, this research would imply substantial economic/environmental savings. Also, a more sustainable management of river basins through more reliable control reservoirs’ operation is expected to be achieved.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3