Single Hidden Layer Intelligent Approach to Modeling Relative Cooling Power of Rare-Earth-Transition-Metal-Based Refrigerants for Sustainable Magnetic Refrigeration Application

Author:

Alqahtani Abdullah1ORCID

Affiliation:

1. Computer Information System Department, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia

Abstract

Solid-state magnetocaloric-based magnetic refrigeration offers green and sustainable refrigeration with improved efficiency, compactness and environmental friendliness compared with commercialized gas compression refrigeration systems. Relative cooling power (RCP) plays a significant role in the candidature of any magnetic material refrigerants in this application, while the tunable physical and magnetic properties of rare-earth-transition-metal-based materials strengthen the potential of these materials to be used in a cooling system. This work develops single hidden layer (SIL) extreme learning machine intelligent models for predicting the RCP of rare-earth-transition-metal-based magnetocaloric compounds using elemental constituent ionic radii (IR) and maximum magnetic entropy change (EC) descriptors. The developed model based on the sine (SN) activation function with ionic radii (IR) descriptors (SN-SIL-IR) shows superior performance over the sigmoid (SG) activation function-based model, represented as SG-SIL-IR, with performance improvements of 71.86% and 69.55% determined using the mean absolute error (MAE) and root mean square error (RMSE), respectively, upon testing rare-earth-transition-metal-based magnetocaloric compounds. The developed SN-SIL-IR further outperforms the SN-SIL-EC and SG-SIL-EC models which employed maximum magnetic entropy change (EC) descriptors with improvements of 45.74% and 24.79%, respectively, on the basis of MAE performance assessment parameters. Estimates of the developed model agree well with the measured values. The dependence of the RCP on an applied magnetic field for various classes of rare-earth-transition-metal-based magnetocaloric compounds is established using a developed SN-SIL-IR model. The improved precision of the developed SN-SIL-IR model, coupled with ease of its descriptors, will strengthen and facilitate the comprehensive exploration of rare-earth-transition-metal-based magnetocaloric compounds for their practical implementation as magnetic refrigerants for promoting a sustainable system of refrigeration that is known to be efficient and environmentally friendly.

Publisher

MDPI AG

Reference49 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3