Affiliation:
1. Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lučića 5, 10000 Zagreb, Croatia
Abstract
The paper proposes a novel staggered phase-field framework for modelling brittle and ductile fractures in monotonic and cyclic loading regimes. The algorithm consists of two mesh layers (displacement and phase field) and a single special-purpose, user-defined finite element, which controls global convergence of the coupled problem and passing of the solution variables between mesh layers. The proposed algorithm is implemented into FE software ABAQUS. For the problem of high cyclic fatigue, a cycle-skipping scheme is also introduced. The proposed methodology is verified on the usual benchmark examples. Small-strain theory is applied, but it has been demonstrated that extension to large strains is straightforward using only the ABAQUS built-in option. The efficiency and stability of the proposed framework was proven by comparison of computational time and the number of iterations per increment in the RCTRL scheme.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献