Design of a Functionally Graded Material Phonon Crystal Plate and Its Application in a Bridge

Author:

Li Shuqin1ORCID,Song Jing1,Ren Jingshun1

Affiliation:

1. School of Automotive and Traffic Engineering, Hefei University of Technology, Hefei 230009, China

Abstract

In order to alleviate the structural vibrations induced by traffic loads, in this paper, a phonon crystal plate with functionally graded materials is designed based on local resonance theory. The vibration damping performance of the phonon crystal plate is studied via finite element numerical simulation and the band gap is verified via vibration transmission response analysis. Finally, the engineering application mode is simulated to make it have practical engineering application value. The results show that the phonon crystal plate has two complete bandgaps within 0~150 Hz, the initial bandgap frequency is 0.00 Hz, the cut-off frequency is 128.32 Hz, and the internal ratio of 0~100 Hz is 94.13%, which can effectively reduce the structural vibration caused by traffic loads. Finally, stress analysis of the phonon crystal plate is carried out. The results show that phonon crystals of functionally graded materials can reduce stress concentration through adjusting the band gap. The phonon crystal plate designed in this paper can effectively suppress the structural vibration caused by traffic loads, provides a new method for the vibration reduction of traffic infrastructure, and can be applied to the vibration reduction of bridges and their auxiliary facilities.

Funder

Anhui province natural science foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3