Application of Immobilized Biocatalysts in the Biotransformation of Non-Steroidal Anti-Inflammatory Drugs

Author:

Nowak Agnieszka1ORCID,Dzionek Anna1ORCID,Wojcieszyńska Danuta1ORCID,Guzik Urszula1ORCID

Affiliation:

1. Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Science, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland

Abstract

Among the micropollutants identified in the environment, non-steroidal anti-inflammatory drugs (NSAIDs) dominate more and more often. This is due to both the high consumption and low efficiency of biological wastewater treatment plants, where the initial transformation of NSAIDs most often takes place. The solution to the problem may be using preparations supporting activated sludge in sewage treatment plants in the biodegradation of NSAIDs. Therefore, the research aimed to develop a biopreparation stimulating the activated sludge of the sewage treatment plant to decompose paracetamol and selected NSAIDs. This biopreparation is based on strains of Stenotrophomonas maltophilia KB2, Planococcus sp. S5, Bacillus thuringiensis B1(2015b), and Pseudomonas moorei KB4 immobilized on a plant sponge. As a result of the tests, it was shown that the optimal species composition of the proposed preparation includes all tested strains immobilized on a carrier with a mass of 1.2 g/L. The system optimization showed that the optimal amount of strains on the carrier was 17 mg/g of the carrier, 15 mg/g of the carrier, 18 mg/g of the carrier, and 20 mg/g of the carrier for KB4, B1(2015b), KB2, and S5, respectively. The presence of phenol stimulated the degradation of the tested drugs, and this effect deepened with increasing phenol concentration. At the same time, the degradation rate of the mixture of NSAIDs in the presence of phenol did not depend on the amount of biomass. The lack of inhibition in the presence of an additional co-contaminant, i.e., phenol, indicates that the preparation constructed in this way has a chance of being used in sewage treatment plant systems, where introduced strains are exposed to various aromatic compounds.

Funder

National Centre for Research and Development, Poland

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3