Multiple-Criteria Decision-Making for Medical Rescue Operations during Mass Casualty Incidents

Author:

Tomczyk Lukasz1ORCID,Kulesza Zbigniew2

Affiliation:

1. Faculty of Technical Sciences, University of Warmia and Mazury in Olsztyn, 11 Oczapowskiego St., 10-719 Olsztyn, Poland

2. Faculty of Electrical Engineering, Bialystok University of Technology, 45D Wiejska St., 15-351 Bialystok, Poland

Abstract

Mass casualty incident (MCI) is an unpredictable situation where a great number of people have been injured after an accident or sudden disease. Survival of the injured in the MCI depends on the efficiency of the directed emergency system (DES). The organization and management of medical assistance is of paramount importance. The shortest possible time to provide medical services to injured persons is crucial. The medical service in the case of the MCI primarily requires decisions on the priority of the order of treatment of the injured, the choice of medical transport and the location of specialized emergency treatment. As part of this paper, the effectiveness of the DES has been analyzed, and criteria used to improve rescue operations have been formulated. A formalized mathematical description of the medical rescue operations in MCIs has been proposed, and the optimization problem as the mixed integer linear programming (MILP) task was formulated. Optimization of an example case of rescue operations in MCIs has been presented. A computer simulator for optimal decision-making in medical rescue operations (CSMRO) has been developed for this purpose. The CSMRO implements various multi-criteria optimization methods to solve the formulated problem of rescue operations optimization. The results of computations made with the developed CSMRO simulator significantly shorten the time of decision-making in mass casualty incident handling.

Funder

Bialystok University of Technology

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3