Affiliation:
1. Key Laboratory of Advanced Manufacturing and Automation Technology (Guilin University of Technology), Education Department of Guangxi Zhuang Autonomous Region, Guilin 541006, China
2. Guangxi Engineering Research Center of Intelligent Rubber Equipment (Guilin University of Technology), Guilin 541006, China
Abstract
In order to cope with the influences of noise interference and variable load on rolling bearing fault diagnosis in real industrial environments, a rolling bearing fault diagnosis method based on CBAM_ResNet and ACON activation function is proposed. Firstly, the collected bearing working vibration signals are made into input samples to retain the original features to the maximum extent. Secondly, the CBAM_ResNet fault diagnosis model is constructed. By taking advantage of the convolutional neural network (CNN) in classification tasks and key feature extraction, the convolutional block attention module network (CBAM) is embedded in the residual blocks, to avoid model degradation and enhance the interaction of information in channel and spatial, raise the key feature extraction capability of the model. Finally, the Activate or Not (ACON) activation function, is introduced to adaptively activate shallow features for the purpose of improving the model’s feature representation and generalization capability. The bearing dataset of Case Western Reserve University (CWRU) is used for experiments, and the average accuracy of the proposed method is 97.68% and 93.93% under strong noise interference and variable load, respectively. Compared with the other three published bearing fault diagnosis methods, the results indicate that this proposed method has better noise immunity and generalization ability, and has good application value.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献