Quartz Powder Valorisation in White Self-Compacting Concrete: Mortar Level Study

Author:

Matos Ana Mafalda1ORCID,Maia Lino1ORCID,Coutinho Joana Sousa1

Affiliation:

1. CONSTRUCT-Labest, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal

Abstract

Quartz powder (QP) from mining exploration has increased, and valorisation solutions are sought. QP incorporation in structural concrete is an exciting strategy for the growth and sustainable development of the concrete industry, waste management and environmental protection. This work addresses the valorisation of QP from a Portuguese company on powder-type self-compacting concrete for architectural and structural purposes, combining the light colour of quartz with white cement. As such, QP was used as a partial cement replacement, acting as a filler on self-compacting white mortars (SCWM) and pastes (SCWP). Firstly, the QP was characterised by chemical, physical and morphological properties. Afterwards, SCWM with 10% of the white Portland cement with QP were produced and, with 10% cement replacement by limestone fillers, commercially available, for comparison purposes. The following engineering properties were evaluated, flowability and viscosity, electrical resistivity, porosity and mechanical strength. In equivalent pastes samples, the heat of hydration was accessed. Finally, an architectonic element prototype was produced using SCWM-QP, and colour and aesthetics were evaluated. All SCWM reached adequate deformability and viscosity for self-compaction. In the hardened state, compressive strength, electrical resistivity and water-permeable porosity presented similar results for mortars incorporating quartz powder and limestone fillers. The isothermal calorimetry in equivalent pastes revealed a slight desacceleration of hydration for SCWP incorporating QP. The major findings of this study confirm the feasibility of SCWM with QP, meeting the required performance while reducing resource depletion in the concrete industry and adding value to a by-product.

Funder

Base Funding

Programmatic Funding

FCT-Fundação para a Ciência e a Tecnologia

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference60 articles.

1. Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry;Scrivener;Cem. Concr. Res.,2018

2. Concrete material science: Past, present, and future innovations;Cem. Concr. Res.,2018

3. (2022, September 26). European Cement Association. Available online: https://cembureau.eu/.

4. International Energy Agency (2022, September 26). Technology Roadmap—Low-Carbon Transition in the Cement Industry. Available online: www.wbcsdcement.org.

5. OCDE (2019). Global Material Resources Outlook to 2060, OECD.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3