Modeling and Optimization with Artificial Intelligence in Nutrition

Author:

Knights Vesna1ORCID,Kolak Mirela2,Markovikj Gordana1,Kljusurić Jasenka Gajdoš3ORCID

Affiliation:

1. Faculty of Technology and Technical Sciences-Veles, University St. Kliment Ohridski-Bitola, 7000 Bitola, North Macedonia

2. School of Medicine, University of Zagreb, Šalata 2, 10000 Zagreb, Croatia

3. Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia

Abstract

The use of mathematical modeling and optimization in nutrition with the help of artificial intelligence is indeed a trendy and promising approach to data processing. With the ever-increasing amount of data being generated in the field of nutrition, it has become necessary to develop new tools and techniques to help process and analyze these data. The paper presents a study on the development of a neural-networks-based model to investigate parameters related to obesity and predict participants’ health outcomes. Improvement techniques of model performances are made (classification performance by reducing overfitting, capturing non-linear relationships, and optimizing the learning process). Predictions are also made with the random forest model to compare the performance of accuracy and prediction scores of two different models. The dataset contains data relating to the obesity of 200 participants in a weight loss program. Information is collected on their basic anthropometric data, as well as biochemical data, which are significant parameters closely related to obesity. It is important to note that weight loss is not always linear and can vary based on individual factors; so, a prediction is made on supervised learning based on patient data (before the diet regime, during the regime, and reaching the desired weight). The dataset is trained on individuals features such as age; gender; body mass index; and biochemical attributes such as MCHC (Mean Corpuscular Hemoglobin Concentration), cholesterol, glucose, platelets, leukocytes, ALT (alanine aminotransferase), triglycerides, TSH (thyroid stimulating hormone), and magnesium. The results of the developed neural network model show high accuracy, low loss in training, high-precision predictions during evaluation of the model, and improved performance over other machine learning models. Calculations are conducted in Anaconda/Python. Overall, the combination of mathematical modeling, optimization, and AI offers a powerful set of tools for analyzing and processing nutrition data. As our understanding of the relationship between diet and health continues to evolve, these techniques will become increasingly important for developing personalized dietary recommendations and optimizing population-level dietary guidelines.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3