DABaCLT: A Data Augmentation Bias-Aware Contrastive Learning Framework for Time Series Representation

Author:

Zheng Yubo1,Luo Yingying1ORCID,Shao Hengyi1,Zhang Lin1,Li Lei1ORCID

Affiliation:

1. School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing 100876, China

Abstract

Contrastive learning, as an unsupervised technique, has emerged as a prominent method in time series representation learning tasks, serving as a viable solution to the scarcity of annotated data. However, the application of data augmentation methods during training can distort the distribution of raw data. This discrepancy between the representations learned from augmented data in contrastive learning and those obtained from supervised learning results in an incomplete understanding of the information contained in the real data from the trained encoder. We refer to this as the data augmentation bias (DAB), representing the disparity between the two sets of learned representations. To mitigate the influence of DAB, we propose a DAB-aware contrastive learning framework for time series representation (DABaCLT). This framework leverages a raw features stream (RFS) to extract features from raw data, which are then combined with augmented data to create positive and negative pairs for DAB-aware contrastive learning. Additionally, we introduce a DAB-minimizing loss function (DABMinLoss) within the contrasting module to minimize the DAB of the extracted temporal and contextual features. Our proposed method is evaluated on three time series classification tasks, including sleep staging classification (SSC) and epilepsy seizure prediction (ESP) based on EEG and human activity recognition (HAR) based on sensors signals. The experimental results demonstrate that our DABaCLT achieves strong performance in self-supervised time series representation, 0.19% to 22.95% accuracy improvement for SSC, 2.96% to 5.05% for HAR, 1.00% to 2.46% for ESP, and achieves comparable performance to the supervised approach. The source code for our framework is open-source.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Beijing Municipal Science & Technology Commission

Engineering Research Center of Information Networks, Ministry of Education

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3